Concept: Algebraic Formulae
CONTENTS
(a + b + ...)2
- (a)2 = a2
- (a + b)2 = a2 + b2 + 2ab
- (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
- (a + b + c + d)2 = a2 + b2 + c2 + d2 + 2ab + 2ac + 2ad + 2bc + 2bd + 2 cd
(a + b)n
- (a + b)1 = a1 + b1
- (a + b)2 = a2 + 2ab + b2
- (a + b)3 = a3 + 3a2b + 3ab2 + b3
- (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
- (a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5
Remember:
- (a + b)n = nC0anb0
+ nC1an-1b2 + nC2an-2b2 +
...
+ nCn-2a2bn-2 + nCn-3a1bn-1+ nCna0bn
[This is called Binomial Theorem] - Number of terms in (a + b)n = (n + 1)
(a - b)n
- (a - b)1 = a1 - b1
- (a - b)2 = a2 - 2ab + b2
- (a - b)3 = a3 - 3a2b + 3ab2 - b3
- (a - b)4 = a4 - 4a3b + 6a2b2 - 4ab3 + b4
- (a - b)5 = a5 - 5a4b + 10a3b2 - 10a2b3 + 5ab4 - b5
an - bn
- a1 - b1 = a - b
- a2 - b2 = (a - b)(a + b)
- a3 - b3 = (a - b)(a2 + ab + b2)
- a4 - b4 = (a - b)(a3 + a2b + ab2 + b3) = (a - b)(a + b)(a2 + b2)
- a5 - b5 = (a - b)(a4 + a3b + a2b2 + ab3 + b4)
Remember:
- an - bn = (an-1 + an-2b + ... + abn-2 + bn-1)
- an - bn is always divisible by (a - b)
- an - bn is also divisible by (a + b) if n is even.
an + bn
- a1 + b1 = a + b
- a2 + b2 = No Identity
- a3 + b3 = (a + b)(a2 - ab + b2)
- a4 + b4 = No Identity
- a5 + b5 = (a + b)(a4 - a3b + a2b2 - ab3 + b4)
Remember:
- an + bn is divisible by (a + b) if n is odd.
a3 + b3 + c3
a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
© 2024 | All Rights Reserved | Apti4All