PE 2 - Surds & Indices | Algebra - Surds & Indices
If , then the value of x is
- (a)
-1 + √3
- (b)
-1 - √3
- (c)
More than one of the above
- (d)
None of these
Answer: Option A
Explanation :
Let x =
⇒ x =
⇒ 2x + x2 = 2
⇒ x2 + 2x – 2 = 0
⇒ x = -1 ± √3 (Using formula for quadratic equations)
Here, since x > 0, we will reject the negative value.
∴ x = -1 + √3
Hence, option (a).
Workspace:
If x = 3 + √8 and xy = 1. Find x2 – xy + y2.
Answer: 33
Explanation :
Given, x = 3 + √8 and x × y = 1
⇒ y = = = 3 - √8
∴ x2 – xy + y2 = x2 – 2xy + y2 + xy
= (x - y)2 + xy
= (2√8)2 + 1
= 32 + 1 = 33
Hence, 33.
Workspace:
If x = 1 + √2 + √3, find x4 – 4x3 – 4x2 + 16x + 8.
Answer: 16
Explanation :
x = 1 + √2 + √3
⇒ x - 1 = √2 + √3
Squaring both sides, we get
⇒ x2 – 2x + 1 = 2 + 3 + 2√6
⇒ x2 – 2x - 4 = 2√6
Again, squaring both sides, we get
⇒ x4 + 4x2 + 16 – 4x3 – 8x2 + 16x = 24.
⇒ x4 – 4x3 - 4x2 + 16x + 16 = 24.
⇒ x4 – 4x3 - 4x2 + 16x = 8.
Now, we have
x4 – 4x3 – 4x2 + 16x + 8 = 8 + 8 = 16.
Hence, 16.
Workspace:
If x = , find the value of x3 - 9x2 + 25x - 20.
- (a)
0
- (b)
1
- (c)
2
- (d)
3
- (e)
None of these
Answer: Option A
Explanation :
x = = = × = 3 + √2
⇒ x - 3 = √2 ...(1)
⇒ (x - 3)3 = (√2)3
⇒ x3 - 27 - 9x2 + 27x = 2√2
⇒ x3 - 27 - 9x2 + 27x = 2(x - 3) [from (1)]
⇒ x3 - 21 - 9x2 + 25x = 0
⇒ x3 - 9x2 + 25x - 20 = 1
Hence, option (b).
Workspace:
If = = = , then which of the following is correct?
- (a)
+ = + 1
- (b)
+ =
- (c)
+ = - 1
- (d)
+ =
Answer: Option A
Explanation :
Given, = = =
=
⇒ =
⇒ = ...(1)
⇒ 0.1 = ...(1)
=
⇒ =
⇒ =
⇒ 0.01 = ...(2)
=
⇒ =
⇒ =
⇒ 0.001 = ...(3)
We konw, (1) × (2) = (3)
⇒ 0.1 × 0.01 = 0.001
⇒ × =
⇒ =
⇒ + - 2 = - 1
⇒ + = + 1
Hence, option (a)
Workspace:
Find the value of + + .
- (a)
1/a
- (b)
a
- (c)
1
- (d)
0
Answer: Option C
Explanation :
Given, + + .
= + + .
= + +
=
= 1
Hence, option (c).
Video Solution:
If pqr = , then find the value of + +
Workspace:
Find x, if 32x+2 + 32x-2 = 738.
Answer: 2
Explanation :
Given, 32x+2 + 32x-2 = 738
⇒ + = 738
⇒ = 738
⇒ = 738
⇒ = 738 ×
⇒ = 9 × 9 = 81
⇒ = 34
⇒ 2x = 4
⇒ x = 2
Hence, 2.
Workspace:
Simplify .
- (a)
4 - √5
- (b)
- (c)
- (d)
Answer: Option C
Explanation :
Let x =
Let us first calculate =
Now, x =
⇒ x =
⇒ x =
Now, =
⇒ x =
On rationalising with 4 - √5, we get
⇒ x =
Hence, option (c).
Workspace:
Simplify .:
- (a)
a16
- (b)
a12
- (c)
a8
- (d)
a4
Answer: Option D
Explanation :
.
= ×
= a2 × a2 = a4
Hence, option (d).
Workspace:
Feedback
Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.