CRE 3 - Modulus | Algebra - Inequalities & Modulus
Join our Telegram Channel for CAT/MBA Preparation.
Direction for next 4 questions:
Find the range of values of x which satisfies the following inequalities.
|2x - 4| ≤ 6
- (a)
x ∈ (-∞, -1] ∪ [5, ∞)
- (b)
-5 ≤ x ≤ 5
- (c)
-1 ≤ x ≤ 5
- (d)
None of these
Answer: Option C
Join our Telegram Channel for CAT/MBA Preparation.
Explanation :
If |ax + b| ≤ c, then
- c ≤ ax + b ≤ c
⇒ -6 ≤ 2x - 4 ≤ 6
⇒ -2 ≤ 2x ≤ 10
⇒ -1 ≤ x ≤ 5
Hence, option (c).
Workspace:
|3x - 5| ≥ 3
- (a)
x ∈ (-∞, 2/3] ∪ [8/3, ∞)
- (b)
2/3 ≥ x ≥ 8/3
- (c)
2/3 < x < 8/3
- (d)
None of these
Answer: Option B
Join our Telegram Channel for CAT/MBA Preparation.
Explanation :
If |ax + b| ≥ c, then
- c ≥ ax + b ≥ c
⇒ -3 ≥ 3x - 5 ≥ 3
⇒ 2 ≥ 3x ≥ 8
⇒ 2/3 ≥ x ≥ 8/3
Hence, option (b).
Workspace:
||x - 1| - 2| > 3
- (a)
x ∈ (-∞, -4) ∪ (6, ∞)
- (b)
x ∈ (-4, 6)
- (c)
x ∈ (-∞, -5] ∪ [7, ∞)
- (d)
None of these
Answer: Option A
Join our Telegram Channel for CAT/MBA Preparation.
Explanation :
Given, ||x - 1| - 2| > 3
⇒ -3 > |x - 1| - 2 > 3
⇒ -1 > |x - 1| > 5
Case 1: |x - 1| > 5
⇒ -5 > x – 1 > 5
⇒ -4 > x > 6
⇒ x ∈ (-∞, -4) ∪ (6, ∞)
Case 2: |x - 1| < -1
Now |x - 1| is always positive, hence no solution.
⇒ x ∈ (-∞, -4) ∪ (6, ∞)
Hence, option (a).
Workspace:
|2x + 4| ≥ |3x - 9|
- (a)
x ∈ (0, 14)
- (b)
x ∈ (-∞, 0], [15, ∞)
- (c)
x ∈ [1, 13]
- (d)
None of these
Answer: Option C
Join our Telegram Channel for CAT/MBA Preparation.
Explanation :
In such questions we first calculate the critical points and then takes cases.
Critical points are when the expressions within the mod are zero.
∴ 2x + 4 = 0 when x = -2, &
3x – 9 = 0 when x = 3.
∴ The critical points are -2 and 3.
Now let us take cases for x.
Case 1: x > 3
Both 2x + 4 and 3x – 9 are positive
∴ 2x + 4 ≥ 3x – 9
⇒ x ≤ 13
∴ x ∈ (3, 13]
Case 2: -2 < x < 3
2x + 4 is positive while 3x – 9 is negative
∴ 2x + 4 ≥ -(3x – 9)
⇒ 5x ≥ 5
⇒ x ≥ 1
∴ x ∈ [1, 3)
Case 3: x < -2
Both 2x + 4 and 3x – 9 are negative
∴ -(2x + 4) ≥ -(3x – 9)
⇒ 2x + 4 ≤ 3x – 9
⇒ x ≥ 13
∴ No solution
⇒ x ∈ [1, 3) ∪ (3, 13]
Now we need to check for critical points as well. The original inequality is true for x = -2 and 3. Hence, we need to include critical points in our answer.
∴ x ∈ [1, 13]
Hence, option (c).
Workspace:
f(x) = |3x + 7| + 16. Find the value of x for which f(x) is minimum.
- (a)
0
- (b)
-3
- (c)
16
- (d)
-7/3
Answer: Option D
Join our Telegram Channel for CAT/MBA Preparation.
Explanation :
f(x) = |3x + 7| + 16
To minimize f(x) we need to minimize |3x + 7|
We know |3x + 7| ≥ 0
∴ least possible value of |3x + 7| = 0
⇒ 3x + 7 = 0
⇒ x = -7/3
Hence, option (d).
Workspace:
f(x) = |x - 1| + |x + 1| + |x + 3|. Find the least possible value of f(x).
- (a)
-1
- (b)
0
- (c)
2
- (d)
4
Answer: Option D
Join our Telegram Channel for CAT/MBA Preparation.
Explanation :
To minimize any expression of the form |x + a| + |x + b| + …
we need to find critical points and assume a value of x equal to the critical point in the middle.
f(x) = |x - 1| + |x + 1| + |x + 3|
The critical points are: -3, -1 and 1.
The critical point in the middle is -1, hence we substitute x = -1 to find the least possible value of f(x).
∴ f(-1) = |-1 - 1| + |- 1 + 1| + |-1 + 3| = 2 + 0 + 2 = 4
Hence, option (d).
Workspace:
f(x) = |x - 1| + |x + 1| + |x + 3| + |x + 5|. Find the least possible value of f(x).
- (a)
3
- (b)
5
- (c)
8
- (d)
Cannot be determined
Answer: Option C
Join our Telegram Channel for CAT/MBA Preparation.
Explanation :
To minimize any expression of the form |x + a| + |x + b| + …
we need to find critical points and assume a value of x between the 2 middle critical points.
f(x) = |x - 1| + |x + 1| + |x + 3| + |x + 5|
The critical points are: -5, -3, -1 and 1.
The 2 critical points in the middle are -3 and -1, hence we assume a value of x in between -3 and -1. Let x = -2.
∴ f(-2) = |-2 - 1| + |-2 + 1| + |-2 + 3| + |-2 + 5| = 3 + 1 + 1 + 3 = 8
Hence, option (c).
Workspace:
Feedback
Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.