Please submit your concern

Explanation:

M and N are positive integers such that M > N

∴ M! – N! = abc…999000

∴ [M(M − 1)(M − 2)……N!] – N! = abc…999000

∴ N!{[M(M − 1) (M − 2)……] − 1} = abc…999000

Let the term in the square bracket be x.

Since M is a positive integer, the term in the square brackets i.e., x is also a positive integer, and hence, (x – 1) is also a positive integer.

∴ N!(x – 1) = abc…999000

(x-1)=abc...999000N!

Hence, the maximum number of zeroes in N! is 3.

∴ N! ≤ 19 (because from 20! onwards, each factorial has atleast 4 zeroes)

Now, there are 4 possible ranges for N:

  1. ​​​​​​​N = 0 to 4 (no zeroes in N!) 
  2. N = 5 to 9 (1 zero in N!) 
  3. N = 10 to 14 (2 zeroes in N!) 
  4. N = 15 to 19 (3 zeroes in N!) 

Consider case 3, where there are 2 zeroes in N!

Since N!(x – 1) = abc…999000, the third zero on the LHS should come from (x – 1).

For this, x has to be of the form pqrs…1 i.e., x has to be an odd number.

Now, there are two possibilities:

1. M = N + 1

    Here, M! – N! = (M × N!) – N! = N!(M – 1)

    In this case, M = x

    Since N = 10 to 14 and M – 1 should end in 0, M = 11 and N = 10

    Hence, M(M – N) = 11(11 – 10) = 11

    This does not tally with any of the options.

     Hence, M ≠ N + 1

2. There is at least one integer between M and N

    Hence, x comprises a series of consecutive integers (at least two as explained above) multiplied with each other. So, there has to be at least one even number in this series.

    Hence, x can never be odd.

    Hence, the third zero on the LHS can never come from (x – 1).

Hence, there cannot be 2 zeroes in N!. Similarly, it can be proved that there cannot be 1 zero or no zeroes in N!.

Hence, N! has three zeroes i.e. 15 ≤ N ≤ 19

Now, M(M – N) = M2 – NM can take four of the five given values.

Hence, there are five possible equations – one for each option.

Consider option 1: M2 – NM – 150 = 0

Here, for N = 15 to 19, see if there exists a value of M (> N) that gives positive integral roots in this equation.

For N = 19, the equation becomes

M2 – 19M – 150 = 0 i.e. M = 25 or M = −6. Here, M = 25 is valid.

Similarly, consider each option.

Option 3:

For N = 17, the equation becomes

M2 – 17M – 200 = 0 i.e. M = 25 or M = −8. Here, M = 25 is valid.

Option 4:

For N = 16, the equation becomes

M2 – 16M – 225 = 0 i.e. M = 25 or M = −9. Here, M = 25 is valid.

Option 5:

For N = 17, the equation becomes

M2 – 17M – 234 = 0 i.e. M = 26 or M = −9. Here, M = 26 is valid.

However, no value of N from 15 to 19 gives an integral solution for M in M2 – NM – 180 = 0

Hence, M(M – N) can never be 180.

Hence, option (b).

Note: There is a logical flaw in this question as the difference of two factorials can never end in 999000. The actual question should have had the last six digits as abc000.

Feedback

Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.


© 2024 | All Rights Reserved | Apti4All